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Abstract
This review outlines the definition, pathophysiology, and potential maternal health consequences of cellular fetal microchimerism, the maternal

acquisition of intact cells of fetal origin during pregnancy. Increased rates and amounts of cellular fetal microchimerism are associated with several

placental syndromes, including preeclampsia and fetal growth restriction. The discovery of cellular fetal microchimerism and methods of detection are

briefly outlined, and we present the mechanisms hypothesized to govern pregnancy-related and long-term maternal health effects of cellular fetal

microchimerism. Specifically, we discuss the potential implications of cellular fetal microchimerism in wound healing, autoimmunity, cancer, and possibly

cardiovascular disease. Cellular fetal microchimerism represents a novel area of research on maternal and transgenerational health and disease,

providing exciting opportunities for developing new disease biomarkers and precision medicine with targeted prophylaxis against long-term maternal

disease.
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Cellular fetal microchimerism: One type

of microchimerism in women

During pregnancy, fetal and maternal genetic material is exchanged

across the placenta.1 This exchange generates cellular fetal microchi-

merism (cFMC), the maternal acquisition of intact cells of fetal

origin.2 The simultaneous, but distinct, maternal acquisition of cell-

free fetal DNA (cffDNA) is useful in noninvasive prenatal testing

(NIPT).3 Unlike cffDNA, which is rapidly cleared from maternal

circulation following delivery,4 cFMC may persist for many years.5

This is reflected in the name, as the term chimerism refers to the long-

term presence of genetically foreign material in an individual.

Although cFMC occurs naturally in mammalian pregnancy,6 cel-

lular microchimerism can also arise iatrogenically following blood

transfusion, tissue-, cell-, and organ transplantation.2 In cellular

microchimerism, the proportion of foreign cells is small (<1 in

10,000 cells).7 cFMC denotes cells of fetal origin transferred to the

mother and cellular maternal microchimerism denotes the transfer of

maternally originating cells to the fetus. Because of this bidirectional

transfer of cells, a woman may host cells of fetal origin from her

pregnancies and cells of maternal origin from her own mother

(Figure 1).2 Furthermore, the same woman might host other cells

transferred from her mother during fetal life, including cells possibly

stemming from older siblings, a vanishing twin, or prior maternal

termination of pregnancy,2,8,9 and even cells of neither fetal nor

maternal origin stemming from maternal blood transfusion.9 Not

all papers, however, demonstrate increased cFMC of older sibling

origin, and further research is needed to uncover all potential sources

of microchimerism in women.10

The effects of microchimeric cells in a woman’s body likely vary

depending on immunological and genetic factors and at what point in

her life she obtains these cells, whether during fetal life, childhood, or

in adulthood. In transplant medicine, microchimerism originating

from the transplant has been shown to correlate with both recipient

tolerance and rejection of the graft, the underlying type of micro-

chimerism proposed as a determining factor.11 In the same way, it

seems logical that different types of cFMC originating from the fetus

during pregnancy would affect how well the woman “tolerates” the

pregnancy. In parous women, excessive cFMC appears to mediate

both positive and negative effects; it is associated with preeclampsia,

wound healing, autoimmune disease, various forms of cancer, and

possibly cardiovascular disease (CVD) (Table 1). cFMC represents an

exciting new area of research on predictors and possibly mediators of

long-term female health and disease.

The history of cFMC detection

In 1893, George Schmorl published groundbreaking findings demon-

strating cells, apparently of placental origin, in the lungs of 17 women
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who had died of eclampsia.30,31 He speculated that feto-maternal cell

transfer occurred in normal pregnancies, though in greater amounts

in eclampsia, and was the first to propose a link between eclampsia

and placental factors.30 Further supporting his theory, investigators

during the 1960s and 1970s detected leukocytes, of presumed fetal

origin, in maternal circulation. They used blood samples from women

(XX karyotype), who each carried a male fetus (XY karyotype) and

isolated lymphocytes of male origin by staining for the Y-chromo-

some.32–34 The discovery of cFMC represented a paradigm shift: pre-

viously, one believed the placenta provided an impenetrable barrier

between mother and fetus preventing maternal exposure to fetal anti-

gens. The existence of cFMC disproved that.

A new field of pregnancy-related research opened up with

the discovery of cFMC. Today, the most commonly utilized

methods of detection are fluorescence in situ hybridization (FISH)

and polymerase chain reaction (PCR). With both methods, the

Y-chromosome is still often employed as a target for identifying

microchimeric cells (Figure 2).2 FISH visualizes the cells in the con-

text of surrounding maternal tissue, but is costly and time consuming.

Real-time PCR is simpler and more time efficient.11 With either

method, the researcher may compare not only the prevalence of

cFMC in different groups but also whether the relative quantities

of cFMC differ in each subject (Figure 3). Both parameters may

differ significantly between women with disease versus healthy

controls.

Although the Y-chromosome is a useful target, it has its limita-

tions.11 Microchimerism arising from a pregnancy with a female fetus

is obviously not detectable by this method, since the pregnant woman

and fetus would both have the XX karyotype. To distinguish female

cFMC from maternal cells, more recently developed PCR probes

target HLA-polymorphisms35 and various single nucleotide polymor-

phisms. These probes are used to target paternally inherited fetal

DNA sequences that the mother does not possess (Figure 4), thereby

detecting microchimerism from male and female fetuses.

Microchimerism derived from different fetuses or other sources of

microchimeric cells, such as older siblings or transfusion- or organ

donors, are also distinguishable. However, the genotypes of the

mother and her child, and ideally, those of other potential micro-

chimerism sources must be obtained, a challenging and often impos-

sible task.

Although much knowledge has been gleaned from microchimer-

ism studies so far, current methods are limited in their sensitivity and

specificity, and provide little information about the gene expression

and cell lineage of microchimeric cells.11 Novel methodologies are

expected to provide more information: (1) droplet digital PCR, an

advanced quantitative PCR method, improves reproducibility,36 (2)

cell sorting methodologies enable the study of specific cFMC cell

lineages, and (3) studies of RNA transcription patterns will provide

information about protein expression in cFMC.11 Information about

the function and nature of cFMC will certainly shed more light on its

role in the maternal body.

The physiology of cFMC

Studies performed to date have shown that maternal acquisition of

fetal genetic material occurs commonly in healthy human and other

mammalian pregnancies.6 It therefore appears to be a physiological

phenomenon. The fetal genetic material acquired by the pregnant

woman is comprised of intact cells (of placental and/or other fetal

cell origin) as well as genetic material shed by the growing placenta,

including cffDNA.2 Maternal acquisition of fetal genetic material

appears to begin early on in pregnancy, as fetal genetic sequences

have been detected in maternal blood at as early as 4–5 weeks

of gestation.37 At this early stage of pregnancy, the uteroplacental

circulation has not yet been established and any cFMC that poten-

tially arises is therefore likely placental in origin.37 Accordingly,

microchimeric cells of a placental phentoype have been detected in

maternal blood.38–40 Later in pregnancy, once the circulation at the

materno-placental interface has developed, cFMC may also encom-

pass cells originating in the fetus transferred directly from the fetal to

the maternal circulation.37 The fetus and the placenta stem from

the same zygote and therefore generally have the same genetic

makeup, hence why the term “cellular fetal microchimerism

(cFMC)” encompasses cells originating in both the fetus and the

placenta. In the maternal body, cFMC appears to have pluripotent

stem cell-like properties allowing differentiation into various cell

types: cFMC has been detected amongst various phenotypic subsets

of hematologic cells in the maternal circulation39,40 as well as in

various organs, including the heart, lungs, brain, breast, thyroid,

liver, gallbladder, kidney, spleen, lymph nodes, cervix, endometrium,

colon, and skin.2,6,29

As pregnancy progresses, the concentration of cFMC in maternal

circulation increases with increasing gestational age.39,41 Quantitative

studies in a population of women with healthy pregnancies at term

show that fetal cells make up 0.6–7.6 cells per 10,000 nucleated mater-

nal blood cells, while cffDNA accounts for about 1.4–5.4% of total

DNA in maternal plasma.1 The prevalence of circulating cFMC is

reported to range from 6 to 50% in blood,14,42 whereas cffDNA is

detectable in 100% of all pregnancies.1 The discrepancy in amount

and prevalence between cFMC and cffDNA may suggest that trans-

fer of intact fetal cells is either less common than shedding of non-

cellular fetal genetic material or it could reflect the sequestration of

cFMC in maternal tissue. The size and makeup of the populations

studied, differences in sampling techniques, and the sensitivity and

specificity of the assays used for detection may explain the wide range

in the cFMC prevalence reported.

Figure 1. Microchimerism (Mc) in three generations. (a)
Proband as infant (red) exchanges Mc with her mother (blue),
resulting in maternal Mc in the infant and fetal Mc in the mother.
(b) As an adult, proband (red) still harboring maternal Mc,
experiences pregnancy herself (green) and acquires new source
of fetal Mc. (c) Later, proband (red), child (green), and proband’s
mother (blue), all with persistent Mc from maternal and/or fetal
sources.
Note: This figure is available in color in the online version of the
journal article.
Source: Reproduced with the permission of UPV/EHU Press
from Gammill and Nelson (2010).2
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After parturition, cFMC remains in the maternal circulation,5

whereas cffDNA is cleared from maternal circulation with 100%

clearance by one day postpartum.4 To distinguish between the two

when testing blood from a woman with an ongoing pregnancy, the

sample is centrifuged and different compartments of the blood are

tested; cffDNA remains suspended in plasma, whereas cFMC aggre-

gates together with maternal white blood cells and platelets. As a

result, NIPT based on cffDNA is specific for the current pregnancy;

Table 1. Maternal acquisition of fetal genetic material and associated clinical outcomes. The table indicates which of the maternal (or
fetal) outcomes associated with excessive cellular fetal microchimerism (cFMC) and/or cell-free fetal DNA (cffDNA)a are beneficial
versus detrimental.

Beneficial maternal outcomes Comments

Wound healing Excessive cFMC postpartum is associated with improved wound

healing, suggesting a beneficial association.12,13

Detrimental maternal (or fetal) outcomes Comments

Preeclampsia Excessive cFMC14,15 and cffDNA16a during pregnancy is associated

with preeclampsia, suggesting a detrimental association

HELLP (hemolysis, elevated liver enzymes, low platelets) The correlation between excessive cffDNAa and preeclampsia

during pregnancy is strengthened in preeclampsia complicated

by HELLP16

Fetal growth restriction (FGR) Excessive cFMC during pregnancy is associated with FGR,17 sug-

gesting a detrimental association

Spontaneous preterm labor Excessive cffDNAa during pregnancy is associated with spontane-

ous preterm labor,18 suggesting a detrimental association

Hashimoto’s thyroiditis, systemic lupus erythematosus, Sj€ogren’s
syndrome

Excessive cFMC in maternal tissue and/or circulation long term is

associated with these conditions and appears detrimental

(though some studies show conflicting results).19 Pregnancy is

associated with flares or reactivation of disease20,21

Systemic sclerosis and primary biliary cirrhosis Excessive cFMC in maternal tissue and/or circulation long term is

associated with these conditions and appears to be detrimen-

tal.19 Pregnancy is associated with worsening of certain features

or symptoms of disease, but disease remains otherwise

stable21,22

Detrimental maternal outcomes long term, beneficial in the

short term

Comments

Rheumatoid arthritis (RA) Excessive cFMC in maternal blood and affected organs long term is

associated with RA exacerbation.19 During pregnancy on the

other hand, high levels of cffDNAa in maternal circulation cor-

relates with low levels of RA activity,23 suggesting a temporary

pregnancy-related beneficial effect23,24

Grave’s disease and multiple sclerosis (MS) cFMC in maternal tissue/and or circulation long term is associated

with Grave’s disease and MS,19 suggesting a detrimental associ-

ation in the long term. Like with RA, these conditions often

ameliorate in the short term during pregnancy24

Beneficial maternal outcomes long term, beneficial or detri-

mental in the short term

Comments

Cancer (melanoma, breast cancer, cervical cancer, uterine cancer,

ovarian cancer, lung cancer, colon cancer, thyroid cancer)

Excessive cFMC appears to be beneficial in the long term with

respect to cancer overall,19,25 but in the short term the corre-

lation appears positive or negative depending on the type and

timing of the malignancy6

Unclear whether beneficial or detrimental to maternal

outcomes

Comments

Cardiovascular disease (CVD) Excessive cFMC and CVD mortality long term have been linked by

a trend.25 However, several studies suggest that enhanced cFMC

is associated with tissue repair following cardiovascular

damage26–28

aDistinction between cellular fetal microchimerism (cFMC) and cell-free fetal DNA (cffDNA) is important as the two may invoke different immu-

nological and other responses. cffDNA is considered a marker of apoptotic placental debris shed into the maternal circulation during pregnancy and is

rapidly cleared following delivery.24 cFMC denotes intact cells of fetal origin with stem cell-like properties that may persist in the woman’s body for

decades, potentially replenishing stem cell niches and continuing to interact with the maternal immune system long term.5,29 cffDNA is more prevalent

in maternal circulation during pregnancy than cFMC and is, on average, present in greater amounts1 (see “The physiology of cFMC” section for further

details).
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prior pregnancies will not likely affect the results.4 cFMC, on the

other hand, can persist in maternal blood, tissues, and organs for

decades,5,29 potentially for life. As a result, one woman might hypo-

thetically carry fetal cells from all of her prior pregnancies.

Surprisingly, a study by Gammill et al. demonstrated that parity

does not appear to affect prevalence or quantity of circulating

cFMC.43 One potential explanation proposed by the authors is

that cFMC derived from different offspring may compete for pre-

dominance in the woman’s circulation.43 They suggest that this mech-

anism may resemble the graft-graft competition observed in bone

marrow transplant recipients who receive umbilical cord blood

stem cells from two different donors, a procedure known as double

unit umbilical cord blood transplantation.44 Gammill et al. suggest

that in the context of cFMC in multiparous women, fetal cells from

each pregnancy may act like individual grafts and that one fetal graft

may reject other fetal grafts, thereby eradicating fetal cells from all

other pregnancies.43 However, it has also been suggested that

fetal microchimeric cells may migrate to maternal bone marrow,

there awaiting signals of tissue damage,45 a phenomenon that could

potentially “make room for” the fetal cells of younger siblings enter-

ing maternal circulation during subsequent pregnancies.

But why do fetal cells get transferred during pregnancy?

Evolutionarily speaking, cFMC should, in theory confer benefit, espe-

cially to the child. Boddy et al. hypothesize that cFMC may affect

lactation, maternal thermoregulation, and mother–child bonding.6

Firstly, they cite a study showing that fetal microchimeric fibroblasts

from mice differentiate into mammary epithelial cells when exposed to

lactation hormones in vitro46 and another study showing that 56% of

healthy parous women carry cFMC in their mammary tissue.47

Secondly, they present evidence that cFMC persists after pregnancy

in maternal thyroid tissue48 and speculate that fetal cells may upregu-

late maternal body temperature in women with newborn infants.6

Figure 2. Fetal Y-chromosome used as microchimerism target. The pregnant woman has two X-chromosomes, whereas the male
fetus has one maternally inherited X-chromosome and one paternally inherited Y-chromosome. This allows for microchimerism
detection by FISH or by qPCR probes targeting the Y-chromosome (as shown here).

Figure 3. Determining prevalence and quantity of fetal microchimerism. Using FISH or quantitative PCR, the prevalence and quantity
of cFMC may be determined. The prevalence is obtained by identifying the number of women in each group that have detectable
cFMC (individuals shown as shaded) relative to the number of women in each group in which cFMC is not detectable (individuals
shown as unshaded) and comparing the two groups. The quantity of cFMC is determined by counting the number of fetal micro-
chimeric cells present in a blood or tissue sample from each woman; the beakers represent blood samples from two different women
containing different quantities of fetal microchimeric cells.
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Finally, based on evidence that fetal cells in maternal mouse brains can

differentiate into mature neurons49 and that cFMC may be found in

the female human brain,50 they propose an evolutionary role for

cFMC in strengthening the emotional tie between mother and child.6

The impact of cFMC in inducing
immunotolerance during pregnancy

and temporary secondary effects
on autoimmune disease

In addition to modulating maternal body function postpartum,

maternal acquisition of fetal genetic material has been proposed to

play a role in inducing materno-fetal tolerance during pregnancy, a

factor potentially contributing to why certain autoimmune diseases,

like rheumatoid arthritis (RA), are temporarily ameliorated during

pregnancy.24 In 1993, a study by Nelson et al. looked into fetal–

maternal disparity in HLA class II molecules,51 a concept illustrated

in Figure 4. They found that the more disparate the non-shared fetal

and maternal HLA-II alleles were, the more likely arthritis was to

improve during pregnancy. When the non-shared alleles were similar,

arthritis remained active or even worsened.51 Later on, a significant

inverse correlation was found between levels of cffDNA in maternal

serum and activity of RA in pregnancy23 (Table 1). Adams et al.

propose that the amelioration of the disease may be due to disparate

fetal HLA-antigens inducing maternal tolerance of the pregnancy

that extends to maternal tolerance of the antigens central to RA.24

A similar mechanism may apply in multiple sclerosis (MS) and

Graves’ thyroiditis, which also appear to ameliorate during pregnan-

cy.24 Adams et al. propose a link between this temporary state of

tolerance and the temporary presence of cell-free fetal genetic mate-

rial in the maternal circulation observed in pregnancy.24

Conversely, systemic sclerosis, an autoimmune disease in which

some features tend to worsen during pregnancy,21 is more common in

women who have given birth to children with greater similarity in

the non-shared allele of the HLA-II, DRB1 gene.52 These findings

suggest that the degree of materno-fetal HLA-(dis)similarity may be

linked to different maternal autoimmune diseases by different path-

ophysiological mechanisms during pregnancy versus long term.

Accordingly, the mechanisms proposed to govern short-term immu-

notolerance during pregnancy24 differ from the mechanisms proposed

to link cFMC to autoimmunity in general.53 In this setting, the dis-

tinction between cffDNA and cFMC is important. cffDNA is rapidly

cleared from maternal circulation following pregnancy.4 In contrast,

cFMC persists and has the potential to engraft and continue to inter-

act with the maternal immune system long term.5 Further studies

on fetal–maternal HLA-disparity, maternal acquisition of cFMC

and other cell-free fetal genetic material, are required in order to

understand the molecular mechanisms relating these phenomena

to maternal autoimmune disease and materno-fetal tolerance

during pregnancy.

Placental dysfunction and acquisition
of cFMC in pregnancy

There are indications that acquisition of fetal genetic material not

only affects maternal health during pregnancy but is also affected

by the health of the pregnancy, specifically by placental dysfunction

(Table 1). cFMC is detected more frequently and in greater quantities

in preeclampsia than in gestational-age matched uncomplicated preg-

nancies.14,15 Preeclampsia is a syndrome in which placental cellular

stress plays an important role.54,55 Relative to uncomplicated preg-

nancies, cFMC is also more common in fetal growth restriction

(FGR) in pregnancies with impaired uteroplacental perfusion,17 a

condition related to preeclampsia. Similarly, cffDNA in maternal

circulation appears to correlate with placental dysfunction. It is asso-

ciated with preeclampsia and to an even greater degree with HELLP

(hemolysis, elevated liver enzymes, and low platelets), a more severe

form of the disease.16 cffDNA is also increased in pregnancies com-

plicated by spontaneous preterm labor.18

Two distinct processes have been suggested that could explain

why an increase in circulating cFMC and other fetal genetic material

is observed in pregnancies with placental dysfunction: one is

increased cell transfer, the other is diminished maternal clearance.2

A third option is diminished cell migration into maternal tissues.

These processes may occur independently or together. Further

research is required to determine what mechanisms underlie such

processes. In addition, the potential role of cFMC in mediating the

development of the excessive systemic maternal vascular inflamma-

tion that occurs in preeclampsia55 has yet to be explored. Further

investigation of these mechanisms may also shed light on the links

between autoimmune disease and pregnancy outcomes.

cFMC and long-term maternal health
and disease

In non-pregnant, parous women, cFMC has been associated with

both long-term maternal disease benefits and risks19,25 (Table 1).

Potential benefits include renewal of stem cell niches and enhanced

maternal tissue repair.19 With respect to the maternal immune

system, cFMC may have beneficial or adverse effects depending on

the setting, potentially acting either as triggers or as effector cells in a

maternal inflammatory reaction.53

In wound healing, cFMC has been suggested to be restorative.

Cells of fetal origin have been found more frequently in inflamed

Figure 4. Fetal HLA-polymorphisms used as microchimerism target. The highly polymorphic HLA Class II genes may be used to
detect fetal microchimerism. The pregnant woman has two copies of the DRB1 gene, shown as allele 1 and allele 2. The fetus inherits
one of these alleles from its biological mother, and one of the alleles from its biological father. The paternally inherited fetal allele may,
as in this example, be different from the pregnant woman’s other allele, thereby providing a target for microchimerism detection.
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maternal wounds than in healthy tissues, where they appear to

participate in maternal angiogenesis and inflammation.13 cFMC iden-

tified by Mahmood and O’Donoghue in Caesarean section scars

express cytokeratin, collagen I and III, and TGF-beta3, a sign that

these cells participate in wound healing.12 Progenitor cells of fetal

origin seem to be recruited to the site of injury in response to mater-

nal signals.12,13

In autoimmune disease, the long-term effects of cFMC appear

to be detrimental. Non-pregnant parous women with Hashimoto’s

thyroiditis, Grave’s disease, systemic sclerosis, systemic lupus erythe-

matosus, Sj€ogren’s syndrome, RA, MS, and primary biliary cirrhosis

have enhanced levels of cFMC in circulation and/or in diseased tis-

sues, suggesting that cFMC may worsen or initiate such conditions.19

However, results are conflicting, with some studies showing no dif-

ference in prevalence of cFMC amongst subjects with autoimmune

disease versus healthy controls.56–59 One mechanism proposed to

induce autoimmunity is that fetally derived HLA peptides, foreign

to the mother, may trigger a maternal alloimmune response similar to

that observed in chronic organ transplant rejection.53 Alternatively,

fetal T-cells might react to allogeneic non-shared maternal antigens in

a mechanism resembling graft-versus-host disease.60 Theoretically,

such alloimmune reactions would be clinically indistinguishable

from autoimmunity. The suggestion that cFMC contributes to auto-

immune disease is consistent with the observation that autoimmunity

is more prevalent in women than in men. However, the fact that men

and children can also develop autoimmune disease, though less

frequently than women, indicates that cFMC is not the sole contrib-

utor to this type of disease process.

In cancer, fetal cells are detectable at multiple tumor sites includ-

ing in melanoma, and breast-, cervical-, uterine-, ovarian-, lung-,

colon-, and thyroid cancer.19 The role of cFMC in such cancers is

likely complex. For example, in certain types of breast cancer, cFMC

has been suggested to have a protective effect,61 possibly by way of

allosurveillance and tissue repair.19 This fits with the observation that

young parous women have a lower lifetime risk of breast cancer than

nulliparous women or women with a first pregnancy after the age

of 35 years.62 However, epidemiological studies also show a tempo-

rarily increased risk of breast cancer directly following childbirth,63

indicating that immunogenetic interactions involved in breast cancer

development may change over time. Further complicating the matter,

breast cancer represents a heterogeneous set of diseases, each of

which may relate to cFMC differently. That being said, in the long

term, and with respect to cancer overall, cFMC appears to be pro-

tective.19 Kamper-Jorgensen et al. recently found an association

between circulating cFMC and a reduced hazard ratio of female

cancer death.25 They also found a trend linking circulating cFMC

to a reduced hazard ratio of female all-cause mortality, though this

association was not statistically significant.

Although Kamper-Jorgensen et al.’s results indicate that cFMC

might improve maternal health overall, they also found a trend

towards increased CVD mortality among women harboring

cFMC.25 They conclude that the role of cFMC may vary by cause

of death, and that in the setting of CVD, cFMC may be detrimental.

Interestingly, women with pregnancies complicated by preeclampsia

have a twofold risk of experiencing major cardiovascular events (e.g.

stroke and myocardial infarction) later in life, and a fourfold risk of

hypertension and heart failure relative to women with uncomplicated

pregnancies.64–66 The association follows a “dose–response” relation-

ship, whereby in preterm preeclampsia with FGR, the risk of mater-

nal CVD increases 7–8 fold.66 This, combined with the evidence

that enhanced cFMC is associated with preeclampsia and FGR,

lends support to the hypothesis that cFMC may be involved in the

pathophysiological pathways linking these placental syndromes to

maternal CVD.

Mouse studies, on the other hand, suggest a beneficial role for

cFMC in CVD. One study showed that fetal cells homed to injured

tissue after induced cerebral ischemic stroke and that multiparous

female mice had better outcomes than nulliparous females and

displayed signs of immunosuppression in the brain.28 Another

mouse study found that fetal cells home to injured maternal hearts

and differentiate into endothelial cells, smooth muscle cells, and car-

diomyocytes, thereby potentially contributing to tissue repair.27 This

is consistent with a study in humans showing that differentiated fetal

cells were found in the hearts of two women with cardiomyopathy.26

However, further study of cFMC, maternal–fetal histocompatibility,

and CVD is required to determine whether cFMC plays a restorative

or detrimental role in the pathophysiology of human female CVD.

Future research

The presence of cFMC is associated with a number of medical con-

ditions in women, but the mechanisms governing the genesis of

cFMC and the short- and long-term positive or negative implications

for maternal health are still unclear. The effects of cFMC may vary

over time in the same woman, depending on immunogenetic relation-

ships across generations and number of pregnancies. Further research

is needed to investigate the origins and functional capacity of cFMC,

factors impacting the amount of cell transfer during pregnancy, as

well as to investigate the consequences of cFMC in maternal circu-

lation and tissues. Novel insights in this field may provide tools

for identifying women in need of preventive and therapeutic inter-

ventions for a range of diseases, as well as establishing new targets for

or modes of treatment in these women. Long-term research in this

field has the potential to improve women’s health outcomes.
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